Keynote and Plenary Sessions Speakers

Prof. Adel Gastli received the B.Sc. Degree in Electrical Engineering from National School of Engineers of Tunis, Tunisia in 1985. From Sept. 1985 till Sept. 1987, he worked with the National Institute for Standards and Intellectual Property in Tunisia. He received the M.Sc. and Ph.D. degrees in Electrical & Computer Engineering from Nagoya Institute of Technology, Japan in Mar. 1990 and Mar. 1993 respectively. He worked with Mitsubishi Electric Corporation in Japan from Apr. 1993 to Jul. 1995. He joined the Electrical and Computer Engineering Department at Sultan Qaboos University, Oman, in Aug. 1995. He served as a Head of the Department from Sept. 2001 to Aug. 2003 and from Sept. 2007 to Aug. 2009. He was appointed as the Director of the Sultan Qaboos University Quality Assurance Office from Feb. 2010 to Jan. 2013. In Feb. 2013, he joined the Electrical Engineering Department at Qatar University as Professor and Kahramaa-Siemens Chair in energy efficiency.  From Aug. 2013 till Sept. 2015, he was appointed the College of Engineering Associate Dean for Academic Affairs. He established the Clean Energy & Energy Efficiency Research Group at QU in March 2013. His current research interests include energy efficiency, renewable energy, electric vehicles and smart grid. He is a Senior IEEE member and an ABET Program Evaluator.
Adel Gastli

Smart Grids: What’s Now and What’s Next?

Mohamed Ibnkahla joined the Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada in 2015 as a Full Professor where he holds the Cisco Research Chair in Sensor Technology for the Internet of Things (IoT); and the Natural Sciences and Engineering Research Council of Canada (NSERC)/Cisco Industrial Research Chair in Sensor Networks for IoT. He obtained the Ph.D. degree and the Habilitation a Diriger des Recherches degree (HDR) from the National Polytechnic Institute of Toulouse, Toulouse, France, in 1996 and 1998, respectively. Prior to joining Carleton University, he has been a Professor at the Department of Electrical and Computer Engineering, Queen’s University, Kingston, Canada, from 2000 to 2015. His research interests include IoT design and applications, cognitive networks, adaptive systems, machine learning and artificial intelligence for wireless systems, and cyber-security for IoT systems. Over the past 10 years, he has been conducting multi-disciplinary research projects designing, developing and deploying Internet of Things in several domains including security and military applications, smart homes, health care, smart grid and sustainable energy, public safety, intelligent transportation systems, environment monitoring, and smart cities. He published 6 books and more than 180 peer-reviewed journal papers, book chapters, and conference papers. He is the author of Wireless Sensor networks: A Cognitive perspective, CRC Press - Taylor and Francis, 2012 and Cooperative Cognitive Radio Networks: The Complete Spectrum Cycle, CRC Press - Taylor and Francis, 2015. In the past 5 years he gave more than 30 keynote talks and invited seminars. He received the Leopold Escande Medal, 1997, Toulouse, France, and the Premier’s Research Excellence Award, Ontario, Canada, 2001. He is the joint holder of 5 Best Paper Awards.  
Mohamed Ibnkahla (Keynote Speaker for CSP)

IoT, AI, and Big Data in a pandemic era

Ahmed Chemori received his M.Sc. and Ph.D. degrees, both in automatic control from Polytechnic Institute of Grenoble, France, in 2001 and 2005 respectively. During the year 2004/2005 he has been a Research and Teaching Assistant at Laboratory of Signals and Systems (LSS - Centrale Supelec) and University Paris 11. Then he joined Gipsa-Lab (Former LAG) as a CNRS postdoctoral researcher. He is currently a tenured research scientist in Automatic control and Robotics for the French National Center for Scientific Research (CNRS), at the Montpellier Laboratory of Computer Science, Robotics and Microelectronics (LIRMM). His research interests include nonlinear (robust, adaptive and predictive) control and their real-time applications in robotics (underactuated robotics, parallel robotics, underwater robotics, humanoid robotics and wearable robotics). He is the author of more than 130 scientific publications. He co-supervised 17 PhD theses (including 9 defended) and more than 40 MSc theses. He served as a TPC/IPC member or associate editor for different international conferences and he was involved in the organization of different scientific events, including Summer Schools, workshops and conferences. He has been a visiting researcher/professor at different institutions (NTNU - Norway, Tohoku University - Japan, EPFL - Switzerland, TUT - Estonia, HUST - China, UPC - China, CINVESTAV - Mexico, UPT - Mexico, Chiang Mai University - Thailand, KAUST - Saudi Arabia, ENIT - Tunisia, ENSIT - Tunisia, UMC - Algeria, etc). He has also delivered various plenary/keynote lectures at different international conferences.
Ahmed Chemori (Keynote Speaker for SAC)

Motion Control of Biomimetic Autonomous Underwater Vehicles: Towards an Effective Diver/Robot Cooperation

Abstract: Biomimetic Autonomous underwater vehicles propose alternatives for conventional propeller-driven underwater vehicles. Median and paired fin (MPF) locomotion is usually suggested as a viable alternative when high maneuverability and hovering capability is required. In fishes, such a propulsion mechanism usually means lower speeds (as opposed to body and caudal fin propulsion) but is advantageous when low speed and precision maneuverability is desired. A particular type of MPF propulsion is sea turtle like 4-fin locomotion. Attempts to copy the locomotion of those agile and versatile reptiles reach back at least a decade with Turtle 2005 and Madeline. Other examples include Finnegan, the RobotTurtle and iRobot Transiphibian. Another line of development is represented by AQUA and AQUA2 four finned amphibian robots that are unique in the way the propellers are used both for swimming and crawling in and out of water. Four-finned propulsion was also realized in some prototypes by deploying a scaffold structure actively controlled by shape memory alloy (SME) wires. U-CAT is an autonomous biomimetic underwater robot developed within a European Union 7th Framework project ARROWS (Archeological Robot Systems for the World Seas). As opposed to the previous examples, four-finned design of this vehicle is motivated solely by the end-user requirements and environmental constraints of the tasks in this specifically shipwreck inspection. It should closely video-inspect underwater objects. When interested to control of biomimetic autonomous underwater vehicles various challenges are to be considered (highly nonlinear dynamics, time-varying parameters, strong coupling between coordinates, underactuation, etc.). This talk deals with motion control of Biomimetic autonomous underwater vehicles, with a special focus on the case study of U-CAT turtle-like biomimetic underwater robot. All the proposed control solutions will be illustrated through different scenarios of real-time experiments in a swimming pool (controlled environment), as well as in open water (real operating conditions).
Dr. Sebastian Bader is an assistant professor in electronics at the Department of Electronics Design at Mid Sweden University, and a senior researcher at the STC Research Centre. He received his PhD degree in 2013 with a focus on energy-efficient and self-powered networked embedded systems. His research focus currently lies on energy harvesting technologies and systems, with a focus on kinetic energy harvesting and photovoltaics for low-power sensor systems. In this area, he has published/co-published approximately 30 publications in international journals and conference proceedings. Dr. Bader has been a visiting researcher in Australia and the UK, is a member of the IEEE, and regularly gives invited talks at international events.
Sebastien Bader (Keynote Speaker for SCI)

Energy harvesting in smart industrial machines: Generating the energy you need from the sources you know

  Abstract: A smart system can be defined as a system incorporating sensing, actuation, control and communication, in order to adjust to or inform about the system’s context or own condition. Through technological advances, particularly in microelectronics, “smartness” has been demonstrated in a number of application domains, ranging from smart healthcare and smart homes, to smart cities and smart industries. To realize smartness on large scale, however, the energy supply to the necessary technologies is still a challenge. Batteries have been the go-to solution in cases where a fixed electrical infrastructure is infeasible or impossible. Batteries, however, have a limited energy capacity and lifetime, resulting in maintenance requirements that are typically undesirable at scale. Consequently, the conversion of ambient energy sources - commonly referred to as energy harvesting - is investigated as an alternative. In this talk, an introduction as to what energy harvesting is, what it can be used for, and what challenges it faces, will be given. It will provide a holistic view, covering examples of energy sources to be exploited, conversion mechanisms to be utilized, and implementation aspects to be considered for system integration. During the talk, concrete cases of energy harvesting systems for smart industry applications will be explored in order to provide tangible examples. Moreover, open research challenges for energy harvesting and self-powered smart systems will be addressed, and an outlook on research trends given.
Demba DIALLO (M'99, SM'05) was born in Dakar, Senegal, in 1966. He received the M.Sc. and Ph.D. degrees both in Electrical and Computer Engineering, from the National Polytechnic Institute of Grenoble, France, in 1990 and 1993 respectively. From 1994 to 1999, he worked as a Research Engineer in the Laboratoire d'Électrotechnique de Grenoble, France, on electrical drives and active filters. In 1999 he joined the University of Picardie «Jules Verne» as Associate Professor of Electrical engineering. In September 2004, he joins the IUT of Cachan, University of Paris XI as an Associate Professor of Electrical Engineering. In December 2005, he received the «Habilitation à Diriger des Recherches» degree from the University of Paris XI. He is with the Laboratoire de Génie Électrique de Paris. His main research interests and experience include analysis, design, and control of electric machines, variable speed drives for traction and propulsion applications, and fault diagnosis of electric drives. His current area of research includes advanced control techniques for ac drives, diagnosis in the field of ac drives and energy management in EV-HEV vehicles. He is a full professor since 2009.
Demba Diallo (Keynote Speaker for PSE)
Dr. Moustafa Elshafei received his Ph.D. with the Dean List Honor from McGill University in 1982, since then he accumulated 31 years of academic experience and 9 years of industrial experience. He authored 5 books and several book chapters, published over 200 publications, among them several highly cited papers in Arabic speech synthesis and recognition, and 45 publications in the AI area. He holds over 25 US and international patents. One of the patent has been a product of a Canadian company since 2003, and another one is licensed to YOKOGAWA Electric Corporation, Japan. Five of the patents introduced AI applications in various fields, and three patents are related to Arabic Natural Language processing. Dr. Elshafei participated in MIT-KFUPM project 2010-2013, and was a visiting scientist at MIT in 2010. Dr. Elshafei received 15 international, national, and university awards. Elshafei is currently Adjunct professor at King Fahd University of Petroleum and Minerals and Professor at Zewail City of Science and Technology in Egypt, where he is the coordinator of the intelligent robotics and embedded systems lab. Dr. Elshafei is a life member of IEEE
Moustafa Elshafei (Keynote Speaker for CSP)

Application of deep learning in Arabic speech processing and recognition

The presentation will give an overview of the recent advances in the applications of deep learning in language processing in general and speech recognition in particular. The talk will then provide a short review on the challenges facing Arabic Language and the recent research in Arabic language and Arabic speech. Finally we present our research activities along several Arabic language applications including, transcription of Arabic news, speech recognition of Arabic dialects, Arabic language modeling using RNN, Arabic phoneme recognition, speech segmentation, automatic restoration of diacritical marks of Arabic text, Quran recitation, on-line Quran annotation, recognition of poem meters, and provide an overview of Arabic conversational agent.
Professor Dr.-Ing. habil. Thomas Fröhlich (born 1969) completed undergraduate and graduate studies at the Technical University of Ilmenau (TUI). From 1992 to 2000 he performed research at the Institute of process measurement and sensor technology (IPMS) at TUI in the areas of temperature measurement, humidity, high-precision force measurement as well as signal processing and disturbance compensation. His habilitation, which carried the title Temperature Compensation of Precision Measuring Devices, discusses the possibilities for modelling the static and dynamic thermal behaviour of measuring devices. Building upon regularly used methods for static temperature compensation and using control theory and system identification, model-generation methods were developed for use in measuring systems to reduce undesired temperature influence. During his time at the Institute of Process Measurement and Sensor Technology, he successfully completed a second course of studies at the Institute of Mathematics at the TUI, making him a “Diplom- Mathematiker” as well. He was employed as a researcher at Sartorius AG Göttingen from January 2001 to August 2009, his last position being that of Director of Development in the area of mass comparators. There he dealt with the high-precision determination of mass using comparator balances and with mass metrology and among other things he was the project leader responsible for the development of the 1 kg prototype comparator in cooperation with the Bureau International des Poids et Mesures (BIPM), Sartorius AG Göttingen and the Institute of Process Measurement and Sensor Technology at the Ilmenau University of Technology. This prototype com-parator makes it possible to perform high-precision, dependable measurement on 1 kg prototypes with a standard deviation of under 50 nano gramm in a vacuum and under 100 nano gramm under air-tight conditions (atmosphere). In 2009 Thomas Fröhlich was named professor of process measurement technology at the Ilmenau University of Technology, becoming the successor of Professor Gerd Jäger, who was the long-time chair of the Department of Process Measurement Technology and the spokesman of the Collaborative Research Centre “Nanopositioning and Nanomeasuring Machines”. The Institute of Process Measurement and Sensor Technology in the Faculty of Mechanical Engineering, which has been headed by Prof. Fröhlich since 2010, is a worldwide leader in the area of force and mass measurement. As part of the bachelor’s and master’s programmes Thomas Fröhlich holds lectures entitled “Process Measurement and Sensor Technology”, “Digital Signal Processing with MATLAB”, “Computer-Aided Methods in Mechanical Engineering”, “Temperatur Measurement” and “Force and Mass Measurement Technology”. Thomas Fröhlich was appointed as visiting professor of China Jiliang University at Hangzhou in 2013 and of Tianjin University in 2017. He had many short term visits to BIPM and national institutes of metrology: LNE/France, CEM/Spain, NIST/USA, Canada, Singapore, Thailand, NPL/India, PTB/Germany, NIM/China, SIMT/China, Algeria, Egypt, KRISS/South Korea and VNIIM Russia.
Thomas Fröhlich (Keynote Speaker for SCI)

The Planck Balance - calibration of E2 mass standards using the new definition

The Planck Balance (PB) is an electronic mass comparator, which allows the calibration of weights in a continuous range from 1 mg to 100 g using a fixed value of the Planck constant, h. It uses the physical approach of Kibble balances that allow the Planck constant to be derived from the mass. Using the Planck-Balance no calibrated mass standards are required during the calibration of mass standards any longer, because all measurements are traceable via the electrical quantities to the Planck constant h, and to the meter and the second. This allows a new type of balance after the redefinition of the SI-units on 20th of May 2019. In contrast to many scientific oriented developments of Kibble balances, the Planck Balance is focused on robust and daily use. The Planck Balance will allow relative measurement uncertainties comparable to the accuracies of class E2 mass standards, as specified in OIML Recommendation R 111-1. The Planck Balance is developed in a cooperation of the Physikalisch-Technische Bundesanstalt (PTB) and the Technische Universität Ilmenau in a project funded by the German Federal Ministry of Education and Research.