Sebastien Bader (Keynote Speaker for SCI)

Energy harvesting in smart industrial machines: Generating the energy you need from the sources you know

 

Abstract: A smart system can be defined as a system incorporating sensing, actuation, control and communication, in order to adjust to or inform about the system’s context or own condition. Through technological advances, particularly in microelectronics, “smartness” has been demonstrated in a number of application domains, ranging from smart healthcare and smart homes, to smart cities and smart industries. To realize smartness on large scale, however, the energy supply to the necessary technologies is still a challenge. Batteries have been the go-to solution in cases where a fixed electrical infrastructure is infeasible or impossible. Batteries, however, have a limited energy capacity and lifetime, resulting in maintenance requirements that are typically undesirable at scale. Consequently, the conversion of ambient energy sources – commonly referred to as energy harvesting – is investigated as an alternative.

In this talk, an introduction as to what energy harvesting is, what it can be used for, and what challenges it faces, will be given. It will provide a holistic view, covering examples of energy sources to be exploited, conversion mechanisms to be utilized, and implementation aspects to be considered for system integration. During the talk, concrete cases of energy harvesting systems for smart industry applications will be explored in order to provide tangible examples. Moreover, open research challenges for energy harvesting and self-powered smart systems will be addressed, and an outlook on research trends given.

Frede Blaabjerg (Keynote Speaker for PSE)

Wind Power – A technology enabled by power electronics

The steady growth of the installed wind power, will reach 600 GW capacity in 2019, together with the up-scaling of the single wind turbine power capability – 15 MW’s are announced by manufacturers, has pushed the research and development of power converters towards full scale power conversion, lower cost pr kW, higher power density and need for a higher reliability. Substantial efforts are carried out to comply with the more stringent grid codes, especially grid faults ride-through and reactive power injection, which challenges the power converter topologies, because the need for crowbar protection and/or power converter over-rating has been seen in the past in the case of a doubly-fed induction generator. The presentation will first give a technology overview. Next power converter technologies are reviewed with focus on single/multi-cell power converter topologies. Further – case studies on the Low Voltage Ride Through demand to power converter are presented including a discussion on reliability. Finally, discussions about topologies for wind farms will be provided where they need to be operating like large power plants like a large synchronous generator.

Moustafa Elshafei (Keynote Speaker for CSP)

Green Desalination Technologies: Electrostatic and hydro-magnetic Desalination Techniques

Unlike the conventional thermal/mechanical desalination methods, which separate water from salts, the hydro-magnetic and the electrostatic techniques separate the salt, in the form of ions, from the water stream. The extracted ions are then used to produce several industrial products, such as Cl2 and NaOH. Most of the commercial techniques suffer from either high cost of energy per m3 of fresh water in case of thermal methods, or high cost of maintenance in the case of reverse osmosis methods, in addition to the environmental issues associated with discharging highly concentrated brine. The environmental impact could be in the form waste lands to dispose the salty brine, harmful effect of the brine waste on the underground water, or adverse effects on marine life. The proposed techniques have several advantages over the existing techniques, including high water recovery ratio, low maintenance cost, efficient energy recovery, environmental friendly, and economical as the system could produce simultaneously several industrial by-products (H2, NaOH, Cl2, and many other products) instead of discharging the highly concentrated brine to the environment.