Recent Advances in Motion Control of Parallel Robots for High-Speed Industrial Applications
Serial robotic manipulators consist of a set of sequentially connected links, forming an open kinematic chain. These robots are mainly characterized by their large workspace and their high dexterity. However, despite these advantages, in order to perform tasks requiring high speeds/accelerations and/or high precision; such robots are not always recommended because of their lack of stiffness and accuracy. Indeed, parallel kinematic manipulators (PKMs) are more suitable for such tasks. The main idea of their mechanical structure consists in using at least two kinematic chains linking the fixed base to the travelling plate, where each of these chains contains at least one actuator. This may allow a good distribution of the load between the chains. PKMs have important advantages with respect to their serial counterparts in terms of stiffness, speed, accuracy and payload. However, these robots are characterized by their high nonlinear dynamics, kinematic redundancy, uncertainties, actuation redundancy, singularities, etc. Besides, when interested in high-speed robotized repetitive tasks, such as food packaging and waste sorting applications, the key idea lies in looking for short cycle times. This means obviously to look for short motion and short stabilization times while guaranteeing the robustness and performance with respect to disturbances and changes/uncertainties in the operational conditions. Consequently, if we are interested in control of such robots, all these issues should be taken into account, which makes it a bit challenging task.
This talk will give an overview of some proposed advanced control solutions for high-speed industrial applications of PKMs in food packaging, waste sorting, and machining tasks. The proposed solutions are mainly borrowed from nonlinear robust and adaptive control techniques and have been validated through real-time experiments on different PKM prototypes.