PROF. Gerald Gerlach (KEYNOTE SPEAKER_SCI)

Hydrogel-Based Chemical and Biochemical Sensors

Hydrogels are cross-linked polymer networks able to absorb or to release large amounts of water. The water uptake is associated with a considerable volume change but also with changes of optical properties like the refractive index. The swelling can be excited by a large spectrum of different physical (e.g. temperature, electrical voltage, magnetic field) and chemical factors (e.g. pH value, concentrations of chemical or biochemical species). The particular sensitivity can be adjusted by tailoring the composition of the hydrogel or via its functionalization. If the interaction between hydrogel and analyte to be measured is reversible then such hydrogels are becoming a promising candidate for miniaturized, cost-effective and inline-capable sensors.

In the talk the most important sensor approaches are presented, in particular mechanoelectrical and optical transducers that enable the creation of sensor platforms for a large variety of measurands. Besides sensitivity, also selectivity, long-term-stability and fast sensor response are crucial points which are in the focus of current research. Advantageous approaches to advance the properties of current hydrogel-based sensors, e.g., by force compensation, porous hydrogels, and novel interrogation techniques, will be introduced. Most recent progress in research has already led to first commercial products.