Finite-Control-Set Model Predictive Control Techniques of Multiphase Electric Drives
With more than three phases, multiphase machines recently captured high-power, high-reliability applications such as electric vehicles, ship propulsion and wind energy conversion systems. Its innate fault-tolerant ability without needing extra hardware is still considered its most practical benefit. Moreover, its additional degrees of freedom opened the window for miscellaneous nontraditional objectives at the expense of the need for more advanced control strategies. For that reason, numerous papers are now available regarding implementing control techniques for multiphase machines, moving towards classic control techniques: field-oriented control and direct torque control, to more sophisticated ones: sliding mode control and finite-control-set model predictive control (FCS-MPC). Thus, this presentation discusses the latest developments in FCS-MPC of two of the most popular multiphase electric drive configurations, five-phase and six-phase.